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COMPUTER ALGORITHMS FOR SOLVING
NON-LINEAR PROBLEMS

W. A. Mapsen*, L. B. SmitHt and N. J. Horri

Department of Aeronautics and Astronautics, Stanford University, Stanford, California

Abstract—Many problems in applied mechanics defy exact solution because of the non-linear nature of the
descriptive differential equations. In such cases, a solution is often obtained through assumption of appropriate
trigonometric or power series, and expansion and collection of coefficients of like trigonometric terms or
powers of the variable. The resulting set of non-linear algebraic equations is then used to obtain the solution.

An alternative solution to many problems of this nature consists of developing a potential expression and
of minimizing it with respect to the coefficients of the series.

In this paper, algorithms are presented for deriving equations with the aid of a digital computer. The
equations are then stored by means of an integer representation. A Newton-Raphson algorithm for minimizing
the integer-form potential is also presented. The method is illustrated by re-deriving the solution for the post-
buckling behavior of thin-walled circular cylindrical shells under axial compression.

The time required for the computations is short; with a Burroughs B5000 computer the total potential
expression was derived in approximately 2 min; and the major stable portion of the load-shortening curve
was found in 10 min.

. NOTATION
Physical
A radial displacement expansion coefficient
E Young’s modulus
F stress function
L cylindrical shell length
R cylindrical shell radius
w energy
n number of waves around shell circumference
t cylindrical shell wall thickness
u, v, w midsurface displacements in the axial, circumferential and inward radial directions respectively
X,y coordinates in the axial and circumferential directions
Eyn By By strains in the shell wall midsurface
& end shortening per unit length
" n*(t/R)
ix haif wave length in the axial direction
oy haif wave length in the circumferential direction
! i
v Poisson’s ratio
4 axial compressive stress
Oy Opa Oy membrane stresses in the shell-wall midsurface
Subscripts
i, j, k running indices
m, n subscripts of stress function expansion coefficients
) non-dimensionalization of w with respect to t; x and y with respect to A, and /A, respectively
e membrane quantity
b bending quantity
o external load quantity
P non-dimensional harmonic portion of stress function expansion
Computer
ARG array containing arguments of a trigonometric product which is to be expanded
TRIG array containing the types of trigonometric terms, designated by code numbers, present in a

trigonometric product which is to be expanded
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BOO integer test quantity giving the sign of an exponent

C array made up of elements which are to be kept in a trigonometric product expansion

D array of coefficients of an expanded trigonometric product with a 1-1 correspondence to the
rows of C

DIM array giving width of SCF array and depth of C array

EBAR eR/t

ETAPWR a code number for the sign of the exponent of

NETA the magnitude of the exponent of #

I a temporary storage array for deflection coefficient subscript numbers

K the degree of a product

N the depth of the C array

NEBAR exponent of EBAR

NMU exponent of u

PROD1 coefficient of term in the potential exclusive of the factor contained in D

S a temporary storage array telling which assumed trigonometric series are to be multiplied
together

SCF an array containing coefficients of the assumed trigonometric series

SFN an array containing arguments and types of trigonometric terms of the assumed trigonometric
series

SwW a temporary storage array in which algebraic terms are stored for searching before final
storage in TERM

TCF numerical coefficient in the equation being expanded by the method

TERM' an array representing the algebraic portions of terms in a potential or differential equation
through the use of integers

TERM an array representing the algebraic portions of terms in a potential or differential equation
through the use of packed integer words

TERMC an array containing numerical coefficiems of TERM' or TERM array elements

ITER an array specifying the number of terms in the coefficient of each trigonometric-expansion-
element

JLIM number of terms in the final potential expression

BASIC CONSIDERATIONS

THERE are many problems in applied mechanics whose solution cannot be obtained
explicitly because of non-linearities in the governing differential equations. An approxi-
mate solution, however, can often be obtained by assuming a suitable truncated trigo-
nometric or power series. Substitution of the assumed series, expansion and subsequent
collection of the coefficients of like trigonometric terms or powers lead to a set of non-
linear algebraic equations. For all but the most simple equations, however, this procedure
is conducive to error, and requires diligent checking to insure correct results. In fact,
if the system becomes too extensive, obtaining the solution is physically almost impossible.

A situation similar to the above exists when a potential energy function is to be
minimized, as in the total potential energy approach in structural theory. Here, one
generally substitutes deflections in the form of trigonometric series into a potential
energy expression. The resulting algebraic expression is then minimized. Again, the
difficulty of solution increases rapidly as more terms are included in the series.

To obviate these difficulties, a method was obtained and a representation invented
for computer development and simplified computer storage of the equations derived
from collecting coefficients of like trigonometric functions. The following example makes
clear the situation considered, and also serves to illustrate the roles played by three of
the computer algorithms.

Consider the hypothetical equation

wi+u, = F(x, y), (1)
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where
w = A, cos(nx) cos(ny)+ A, cos(2nx)+ A, (2a)
and
u = C, sin(nx) cos(ny)+ C, sin(2nx) cos(2ny) + C5 sin(2nx) + C , sin(4mx)
+ C sin(3nx) cos(ny). (2b)
F(x, y), a known function, is given by
F(x,y) = F cos(nx) cos(ny)+ F, cos(2nx) cos(2ny)+ F ; cos(3nx) cos(ny)
+ F, cos(2nx)+ F 5 cos(dnx)+ F g cos(2ny)+ F . (2¢)
Substitution of (2a) into (1) gives
[—nA, sin(nx) cos(ny)—2nA, sin2nx)}* +u, = F(x, y). (3a)

When working by hand the first step is expansion of products of series. On the
computer this is done through a procedure (i.e. an algorithm—a block of code complete
in itself) called SERIESMULT. Application of SERIESMULT to the above expression
and substitution in equation (3a) yield

n2A? sin}(nx) cos? (my)+4n? A, A, sin(nx) sin(2nx) cos(my)
+4n? A2 sin?(2nx) +u, = F(x, y). (3b)
Next, each trigonometric factor has to be expanded in a double trigonometric series
and the coefficients of like trigonometric functions have to be collected. This is ac-

complished through the application of the procedure TRIGSPAND to the series. The
above expression becomes

2 AL —3) cos(2nx) + (1) cos(2ny) — (3) cos(2mx) cos(2ny)]
+4n2 A, A,[(3) cos(nx) cos(ny) — (3) cos(3nx) cos(ny)]+ 4n2 A3[4 — (3) cos(d4nx)]
+u,=F. (3¢)

The last step is to collect terms which are coefficients of like trigonometric functions.
Of course the computer must know which terms combine, and the procedure given for
this discernment is called SEARCHNSTORE. Its application yields

[(n2A2/4)+2n% A3 — F, ]+ [(—n2A2/4)+2nC3 — F ] cos(2nx) + [(n? A2/4)
— Fg] cos(2ry)+ [(—n?A2/4)+ 2rC, — F,] cos(2nx) cos(2my)
+(2n2A A, +7C,— F,) cos(nx) cos(ny)+(—2n2A, A, + 3nC s — F ) cos(3nx) cos(ny)
+(—2n2A%3+4nC,—F5) cos(4nx) = 0. 3)

If each coefficient of (3) is set equal to zero, a set of equations is obtained for the 4; and
C; in terms of F,. Of course, in this example, an arbitrary function of y can be added
to both u and w.

In actual use the procedures SERIESMULT, TRIGSPAND and SEARCHNSTORE
are applied to a typical equation one term at a time. The procedural flow chart shown
in Fig. 1 illustrates this. For example, from the above sample problem the term w2 can
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be considered first. This term is expanded in orderly fashion in SERIESMULT. To each
member of this expanded term as it appears TRIGSPAND, then SEARCHNSTORE are
applied, and each member is treated in this manner until the term is exhausted. When
this occurs, the next term in the equation (u,, in the example above) is considered and
the loop is repeated. Of course, for a linear term such as u, the process is short. The
operations are continued in this manner until every term in the equation has been
multiplied, expanded and stored. In the present problem the resulting equation, in the
form of data, was then punched onto cards. For convenience, or in case of insufficient
machine storage capacity, storage on magnetic tape should present no difficulty.

Algorithms [1] which do somewhat the same thing as SERIESMULT and TRIG-
SPAND are available. In [1] a method is developed for adding, subtracting and multiply-
ing two trigonometric series if the coefficients are known constants. Thus these algorithms
differ from those developed here, since in the present case unknown coefficients are
considered and provision is made for terms as high in degree as 8 (i.e. eight truncated
trigonometric double series multiplied together).

START CONSIDER THE NEXT
TERM (FIRST TERM IF
T (e ENT“ED——C‘SER!ESMULT)——*-URIGSPAND)

FROM START.)

YES ANY TERMS! NO [ TERM COMPLETELY|
N LEFT ? yEg | EXPANDED ¢ SEARCHNSTORE

FINISH
OUTPUT

F1G. 1. Procedural flow chart-equation development.

A Newton—Raphson procedure, NEWTNRAPH, was written to solve the equations
as derived and stored by the above algorithms.

Some specialization in the derivation of the equations, as well as in the Newton—
Raphson process, was required since a parameter u occurs in non-polynomial form.
Most problems have their own peculiarities and the procedures will undoubtedly have
to be modified slightly to incorporate them.

The equations for the example problem are relatively simple to derive by hand.
However, even for this simple problem machine storage and solution is difficult without
the simplified representation introduced. For expressions ten times as long the advantages
are much more apparent.

This method can be applied to any problem of the type outlined above. Limitations
are imposed only by the degree of the equations, storage requirements and available
computer time. The limitation on the degree of the equations is artificial; expanded
programs can easily be developed. Programs written in ALGOL as employed for the
Burroughs B5000 [2, 3] can be found in [4].
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INTEGER REPRESENTATION

Algebraic equations

Integer representation of algebraic terms in the coefficients of trigonometric functions
is the heart of the present computer program. The desirability of storing large amounts
of information in the computer core, rather than on tape, gave birth to the requirement
for representational compactness. The basic idea is as follows.

Consider a polynomial expression in x,

€1 X%+ cyxM 4 - o, x™ =0, 4)
Instead of repeating x in each of the n terms, the expression could simply be written
() +e( )2+ (=0, 5)

where the presence of x is understood. To record this equation only the coefficients and
exponents need be stored, which is of course easily done in a matrix (an array, in computer
phraseology) of size nx 2. Thus

&y €y
a Cc

TERM' =| = ° (6a)
an c"

In fact, if o; = i, the equation could be stored in a I-dimensional array, but this is not
assumed. To find the kth term in the polynomial (4) only TERM'[k, 1] and TERM'[k, 2]
need be known.

Consider next a more complicated polynomial expression, constructed of various
combinations of 4, ... A¢. For example,

¢1AsAg+cA3A +c A A2+ - +¢,A24344 = 0. M
This may be stored in an array nx 7 as
(A4) (4)) (43) (A)) (4s) (Ag) (coeff)
0 0 0 0 1 1 ¢
0 4 0 4 0 0 Cy
1 0 0 0 2 0 Cs3

TERM' =

2 0 1 0 0 1 g (8a)

To extract a term from this equation, say the kth, one writes
T, = TERM'[k, T]ATERM 6 LI ATERM&.2] | 4TERM'[k.6], )
Thus for k = 2,
T, = c,AYA3A343A%42 = ¢, A3AS. (10)
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An even greater simplification can be made if the exponents are positive integers less
than ten. Then (7) may be written

000011 ¢
040400 e

TERM =| 100020 and TERMC =| ¢, 8)
201001 e/

where the additional array of numerical coefficients was introduced because computer
arrays will not accept both integer and non-integer real numbers without the hazard of
round-off error during computation (i.e. | may become 0:999...). This simplification is
obviously necessary for large systems where storage may become a problem. In most
digital computers integers of up to 10-digit length may be used—if more than ten un-
knowns are present, an additional column may be inserted in TERM for each additional
ten unknowns.

If in the expanded equation more than one trigonometric-expansion-element is to
be kept, and (7) is the coefficient of one of these, then another dimension is added to the
TERM and TERMC arrays (8) to record this fact.

So far only integer representation of terms with positive exponents has been considered.
There need be no such limitation. When the possibility of a negative exponent exists,
two digits are used to record (1) the magnitude of the exponent and (2) its sign. Here
the convention is adopted that

I - positive exponent and 0 — negative exponent. (1)

Consider two additional variables, u and » (for this discussion they may be any
unknowns). Assume u always appears to some positive power, while # may have a
negative exponent. Then if one wishes to represent

1
C1HEA5A6+C'2’1A‘2‘A: =0, (12)

provision must be made for 5 to appear in the denominator and TERM' becomes

(Ay) (42) (A3) (A4) (45) (4g) () (NMU) (NETA) (ETAPWR) (coefl)

O 0 0 o0 1 1 0 1 1 0 )
TERM' = )
0O 4 0 4 0 0 O 0 1 1 Cs
(13a)
while
0000110110 )
TERM = ( and TERMC = ( > (13)
0404000011 ¢y

where NMU and NETA are magnitudes of the powers of 4 and # and ETAPWR is
defined according to (11).
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The above machinery is sufficient for many problems. It is necessary but not sufficient
for the problem discussed in the Application Section.

There, quantities of the type (m?u®+n?)?, where m and n are integers less than or
equal to 9, may occur in either the numerator or denominator of a term. A test quantity
as defined by (11) must therefore be stored, as well as m and n. In addition, a parameter
eR/t (defined in the notation) raised to a small positive integer power, NEBAR, appears
in the analysis. Then

s(eR/1A3AL (14)

1 1
~(22p*+4%)2 454 s
Clﬂr[( U + ) 5 6+C2’7(22#2+32)

is written in TERM’ as
(A1) (4,) (43) (44) (45) (46) ( ) (NMU) (NETA) (ETAPWR)

(0 0O 0 0 1 1 0 1 1 0
TERM' =
0 4 0 4 0 0 O 0 1 1
(BOO) (m) (n) ( ) (NEBAR) (coeff.)
1 2 4 0...0 0 ¢,
> (15a)
0 2 3 0...0 1 Cy
which leads to a TERM and TERMC written as
0000110110 1240000000 )
TERM = TERMC = < ) (15)
0404000011 0230000001 /.

To dissect a term for use an integer division routine (dividing by powers of ten) is
applied. Thereby the coefficient exponents and other pieces of information are found
one by one.

Trigonometric series

A simple method of integer representation of trigonometric series is needed while
equations as given above are being derived. Trigonometric function arguments are
represented by simple integers, while the code

1 - cos, 0 — sin (16)

is used to denote the trigonometric functions.
In case (iii) of the example in the Application Section the radial displacement is
given by

w = (w/t) = A, cos(nX) cos(ny)+ 4, cos(2nX) cos(2ny)+ A5 cos(3nx) cos(3ny)
+ A, cos(2nX)+ A5 cos(dnX)+ A, cos(b6nx)+ A,

where the subscripts are renumbered for simplicity.

SFN and SCF arrays, each with 6 rows, are defined. The rows contain information
on W, Ws, Wy, Wiz, Wiy and Wy, in order. The 7 columns of SCF contain the numerical
factors of the terms of the series. Columns 1 and 2 of SFN show the types of trigonometric

series we are dealing with, £A;; sin(in X) sin(jny), ZA,; sin(inX) cos(jny), ZA;; cos(inX) sin(jnp)
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or XA;;cos(in¥)cos(jny), by an application of the convention of (16). If an unknown
consists of two or more types, for example w = X A;; sin(in<) sin(jny) + B, ; cos(inx) sin(jny)
it can be written as the sum of two or more new unknowns, each homogeneous in a
trigonometric type. Thus w = w, +w,, where w, = XA, sin(inx) sin(jnp) and w, =
ZB;; cos(inx) sin(jny). Columns 3-9 and 10-16 of SFN give the trigonometric arguments
for ¥ and p terms, respectively, while the number of the last term in the series whose
coefficient is non-zero is stored in column 17. Thus

and

SFN =

SCF =

g

Last
Trig ) (x-function (p-function non-
types arguments) arguments) zero
ARRY coeff.
11 1232460 1230000 7 (w)
01 1232460 1230000 6 (Wg)
10 1232460 1230000 3 ()
11 1232460 1230000 6 (Wig)
00 1232460 1230000 3 (We5)
11 1232460 1230000 3 (Wy5)

(Coefficients)

1 1 1 | 1 1 1 (W)
-n =2n -3n -2z —4n —-6n 0 (W)
-t =2n 3= 0 0 0 0 (wy)
~n? —4n? -9n* —4n? —16n%* -=36n* 0 [(Ws)
+n? +4n* +9n* 0 0 0 0 [(wg)
—-n? —4n* -9n? 0 0 0 0/ (wy

PROCEDURE TRIGSPAND

(17

(18)

TRIGSPAND was developed to give the Fourier expansion of a product of trigonome-
tric terms of the type

1l

S

Yoe [ Yone] - [(
AU

COS

sin
)(nsnx)] }
cos
sin
B
cos

where there are up to eight terms in each of x and y. In doing so, repeated use is made

of identities such as

cos(ux) cos(bx) = [cos(a+ b)x + cos(a— b)x}/2.

(20)
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Expression (19) includes, of course, the single Fourier series when either the function of
x or that of y is a constant.

TRIGSPAND furnishes a complete expansion of the product. However, at times
only a portion of this expansion is required. This is notably true when in an expansion
of the total potential integrand prior to integration only the constant term need be kept
because the contributions of the higher harmonics to the integral vanish. The trigonome-
tric terms to be kept in the expansion are specified by the array C, which is an input
array to TRIGSPAND.

The other input parameters are K, the number of terms in the product (K < 8), N,
the number of rows in C and the arrays TRIG and ARG. Elements 1 through K and 9
through 8 + K of TRIG are 0 or 1, with

1 - cos and 0 — sin. (21)

Corresponding elements of the array ARG are the input arguments. C is a two-dimensional
array. In each row we store the two types of trigonometric terms (0 or 1), and two argu-
ments. Each row of C corresponds to a term which must be kept should it occur in the
expansion.

Setting C[1, 2] = 2 is a signal to the procedure that a Fourier expansion of a function
of a single variable is under consideration.

D, the output array, gives the magnitude of the coefficients of each term of type C
which is represented in the Fourier series.

As an example of input and output, suppose the product in question is

cos(nx) cos(37x) sin(ry) cos(3ny), (22a)
then K = 2,
{x-function) (y-function)
TRIG=(11000000 01000000 o
ARG=(13000000 130000O0O0) i
If the terms to be kept in the Fourier series are
sin(2nx) sin(4my),
cos(4nx) sin(2ny),
Y {23a)
sin(nx) cos(3ny)
and
cos(2nx) sin(2zy),
then N = 4 and
Trig.
types) Arguments
Xy Xy
00 24
10 42
C= (23)
01 13
10 22
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The output is
— (%) cos{dnx) sin(2my) — (4) cos(2nx) sin(2ny), (24a)

and therefore D is given by
0-0

~025
D= (24)
00

-025

PROCEDURE SEARCHNSTORE

Construction of each term in either a potential expression or a given trigonometric-
expansion-element coefficient takes place in SEARCHNSTORE, as explained in the
Section on Integer Representation. Input to SEARCHNSTORE for this construction in
the numerical example treated under the Section Application is obtained from SERIES-
MULT. The trigonometric-expansion-elements which a given term (e.g. A?) multiplies
are also input to SEARCHNSTORE; they are found by TRIGSPAND.

Next, a search is performed in the potential expression or in the coefficients of eligible
trigonometric-expansion-element coefficients (as deduced by TRIGSPAND) for terms
containing like unknowns and parameters. If such a term is already present in the
trigonometric-expansion-element coefficient, the numerical multiplier of the new term
is added to that of the old one; otherwise, the new term is added to the equation or
trigonometric-expansion-element coefficient. The algebraic portion of each term is
stored in an array TERM. If more than ten integer bits of information are required,
TERM becomes 3-dimensional, as in our sample problem. Numerical multipliers of
each term are stored in an array TERMC, with a one-to-one correspondence to the
first two subscripts of TERM. TERM and TERMC then are both input and output of
SEARCHNSTORE.

The II array tells which terms of the assumed trigonometric expansion are present
(that is, the A;s in the Section Integer Representation), while from S the degree of the
product, K, is determined.

PROD1 is the numerical multiplier of a term under consideration except for the
factors to be found in the D array (e.g. in equation (3c) PRODI for the 4% term is 7).
Thus multiplication of the D array by PRODI yields the numerical multipliers to be
added to TERMC. D is found by TRIGSPAND ; and PROD1 by SERIESMULT.

NMU, NETA, ETAPWR and NEBAR are integers, defined in the Section on Integer
Representation. These quantities are stored with the elements of II to form a member
of TERM.

SEARCHNSTORE can be illustrated through a simple example. Suppose that

H=36000000),
NMU =2, NETA =1, ETAPWR =0 and NEBAR = 0. (25)

Also suppose that D is as found from the simple case presented in the section on TRIG-
SPAND,
D = (0, —025, 0, —0-25), (24)
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with PRODI1 = 3-0. The unknowns are stored as in Integer Representation. During
construction and searching a temporary storage array SW is defined so that

SW[1] = 0010010210 and SW[2] = 0000000000 (26)

are the integers comprising the algebraic portion of the term. (The second integer was
used because this is only the storage scheme for compatibility; additional multiplying
factors, such as (m?u%+n?)?, arising in the calculation of the potential will be stored
later.) This algebraic portion will be entered in some

TERM[2,1,, 1], TERM|[2,1,, 2], (27a)
as well as
TERMI4,1,, 1], TERM[4,1,, 2]. (27b)

The coefficients obtained from multiplying PRODI1 by the D array are —0-75 and —0-75;
they are added to TERMC[2,1,] and TERMCI[4,1,] respectively. I, and I, depend on
the algebraic terms already entered. ITER is an array containing the number of terms
in the potential or in each trigonometric-expansion-element coefficient. I, must be less
than or equal to ITER[2], while I, must be less than or equal to ITER[4]. If algebraic
terms like SW[1] and SW[2] have not been previously entered in TERM, a new entry
is made and the corresponding values of ITER are increased by one.

PROCEDURE FCALC

It often happens that many terms in the equation to be expanded have factors of
second or higher degree in either an unknown function or derivative. FCALC, called by
SERIESMULT, is a time-saver in expanding such terms.

For unknowns containing only two elements in their series representation a call on
FCALC yields the binomial coefficients (;). For more than two elements equivalent
coefficients are found. Thus duplication of calls on TRIGSPAND and SEARCHNSTORE
is omitted. This procedure is especially useful on third and fourth degree terms. For
example, for a 3-element series,

(a+b+c) = a®+b3+c3+3a%b+3a’c+3ab* + 3ac? + 6abc + 3b%*c+3bc?.  (28)

Thus only ten calls on TRIGSPAND and SEARCHNSTORE are required, rather than
twenty-seven ; the latter number of calls would be necessary in a direct expansion where
such terms as abc and achb would be treated separately. Thus a time saving of approxi-
mately 60 per cent is realized.

PROCEDURE SERIESMULT

SERIESMULT is the principal procedure. It furnishes information to TRIGSPAND
through K, N, ARG, TRIG and C, and then to SEARCHNSTORE in the form of 11,
S, D, PRODI, ITER, TERM, TERMC, NMU, NETA, ETAPWR and NEBAR.
SERIESMULT is the procedure actually ‘called’ in an application of the method. It in
turn calls TRIGSPAND, SEARCHNSTORE and FCALC.

A call on SERIESMULT means that the assumed trigonometric series for the un-
knowns are substituted into one term of the differential equation or potential expression,
and the result processed by TRIGSPAND and SEARCHNSTORE as shown in Basic
Considerations. Thus in the introductory example one call on SERIESMULT is equivalent
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to expanding, searching and storing either w2, u, or F. Terms up to the eighth degree
may be processed by SERIESMULT as given in detail in the program of Appendix BI.

Input quantities to SERIESMULT are: (TERM, TERMC, NMU, NETA, ETAPWR,
NEBAR, SFN, SCF, C, ITER, TCF, S, DIM). TERM, TERMC, NMU, NETA, ETAPWR,
NEBAR, SFN and SCF are explained in Integer Representation, C in TRIGSPAND
and ITER in SEARCHNSTORE.

TCF is the numerical coefficient of the term under consideration. The array S contains
the numbers of the terms (rows) of the companion arrays SFN and SCF which are to
be multiplied together. The ninth position of S is the degree of the term.

DIM gives the width of SFN and the depth of the C array.

PROCEDURE NEWTNRAPH

The Newton—Raphson iterative technique was chosen to solve the non-linear algebraic
equations derived in the preceding sections. To find the solutions A; of the set of equations

F{4) =0, j=12...,n (29)
the iterative process
{A %Y = {4,300 —(3F ;/0A,)” '{F}} (30)

is used. This converges if a solution A; exists, (0F ;/0A;) is not singular at the solution,
and the 4{” are ‘near enough’ to the A; as shown in [5]. To minimize a function U, F;
is set equal to dU/0A; in (30).

NEWTNRAPH as included in this report is specialized to the case of the minimization
of a function. The differentiation scheme used in NEWTNRAPH could also be employed
in solving a set of simultaneous nonlinear algebraic equations.

Arguments are the arrays TERM, TERMC and SOLN, the integer JLIM and the
parameter EBAR (actually ¢éR/t). SOLN is the solution vector, JLIM the number of terins
in the total potential energy and EBAR is the end shortening of the cylindrical shell in
the numerical example treated in the Section entitled Application.

Each call on NEWTNRAPH is equivalent to one application of the formula (30) to
the system, with of course F; = dU/0A;. For the example problem (eight unknowns) the
solution at a given EBAR was used as a set of starting values for finding a solution at
EBAR +0-4. For this increment the number of iterations required to find a solution of
satisfactory accuracy was usually five to eight.

APPLICATION

The method described was used to find the solution for the post-buckling behavior
of thin-walled circular cylindrical shells under axial compression, [6-8]. The shell geometry
is shown in Fig. 2.

The three cases treated are distinguished by the number and types of terms taken in
the w deflection expansion. Given w as shown in (A-15), the coefficients retained are

case (1): Ago. A11, Az, Aoz
(1i): Aggs Ay Azay Azos Agos {31a,b,¢)
(1)1 Agg. Ay1s A2z Az3. Azos Agor Ago-
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Case (i) was solved first by Kempner, [7}, while (ii) and (iii) were treated by Almroth, [8].
As an example, case (iii) is discussed here in some detail. For convenience one may write

w = (4, cos(nx) cos(ny)+ A, cos(2nx) cos(2ny) + A5 cos(3nx) cos(3ny) 1
(32)
+ A, cos(2nx)+ A5 cos(4nx)+ A, cos(6mx)+ A,)

The equations governing the post-buckling behavior are given in Appendix A.

)/

t

FiG. 2. Circular cylindrical shell geometry.

The method of this paper may be applied twice to this problem. First a total potential
expression is found by a direct substitution of (A-15) and (A-16) into (A-17). Automated
derivation, though possible, was omitted because orthogonality permitted derivation by
hand without difficulty. The computer method was employed, however, to find the
coefficients F; of the stress function from the A; through use of (A-18). The form of F,
and therefore the composition of the C Array, was found by a preliminary multiplication
of Ws; by Wy; and for case (iii) was assumed as

F, = F, cos(nX)cos(ny)+ F, cos(2nX) cos(2ny)+ F 3 cos(3n X) cos(3ny)

+ F, cos(4ns) cos(4ny)+ F 5 cos(SnX) cos(Snp)+ F ¢ cos(6n ) cos(6np)+ F, cos(nX) cos(3nyp)
+ F4 cos(3nx) cos(np)+ F g cos(nx) cos(Snp)+ F o cos(2nX) cos(dny) + F,, cos(4nX) cos(2ny)
+ F |, cos(5nx)cos(np)+ F 3 cos(Sn¥)cos(3np) + F 4 cos(6nX)cos(2np) + F | s cos(7Tn¥)cos(ny)
+ F ¢ cos{Tnx) cos(3np)+ F,; cos(8nX) cos(2np) + F g cos(9n%) cos(3np) + F 4 cos(2n X)

+ F,q cos(dnX)+F,, cos(bnx)+ F,, cos(2np)+ F 55 cos(4ny)+ F , 4 cos(6my) {33)
Finally, synthesization of these results was required to derive an equation completely
in terms of the A, g 5. and (¢R/1). Integer representations of the various equations as
well as the programs used, may be found in Appendix B of [4].

Post-buckling curves for the three cases were obtained quite simply once starting
values were found. Results, which agree with those of [7], [8] appear in Figs. 3-7.
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CASE(i} — KEMPNER ;

— ADO'AI\ ‘AZO ’A DZ'_.,_*, _ 9

WA COSIRX) COB (X ¥) +AyCOB(2KX) COSIRRY)Y

—

..... +A33c08(3n K)cos(3NT) 4+ Apgcos2n X}

+R, 000818 T) 4 A coBiBRX) +Bgo

GASE (i)~ ALMROTH;

Acor A 1 Ag2, A3, Az0,A40, Aso-

! [ ! ]
2 3 4€R/t5 (3 7

F1G6. 3. Axial compression vs. end shortening.

’ | ]

L=
N/ A

€rs O

FiGc. 4. Wave length ratio vs, end shortening.
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03 —
/A/L\ 0

02
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L i) R
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co 3 erst ¢ & -3

FiG. 5. 1 = n*(t/R) vs. end shortening

5 p— 1 1

F1G. 6. w coefficients Ay, A,,, A3, Ass, vs. end shortening.
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F1G. 7. w coeflicients 4,4, A40, Aoo, Aoz vS. end shortening.

Acknowledgements—The work here reported was sponsored by the U.S. Air Force Office of Scientific Research
under contract No. AF 49(638)1276.

REFERENCES

{1] M. L. CuarNOW, Fourier Series Operating Package, NACA Report No. TN D-1078 (1961).

[2] D. D. MCCRACKEN, 4 Guide to Algol Programming, John Wiley, New York (1962).

[3] Extended Algol Reference Manual for the Burroughs BS000 (5000-21012), Burroughs Corporation, Detroit,
Michigan (1962).

[4] W. A. MaDsEN, L. B. SmitH and N. J. HoFr, Automated Derivation and Integer Representation of Total
Potential and Differential Equation Expansions for Assumed Trigonometric Series with an Application to
the Post-Buckling Behavior of Circular Cylindrical Shells, Department of Aeronautics and Astronautics,
Stanford University, SUDAER No. 201 (1964).

[5] P. HENRICI, Lecture Notes on Elementary Numerical Analysis, John Wiley, New York (1962).

[6] TH. vON KARMAN and H. S. Tsien, J. aero. Sci. 8, 303 (1941).

[7] J. KEMPNER, J. aero. Sci. 17, 329 (1954).

[8} B. O. ALMROTH, 4144 J. 1, 630 (1963).



Computer algorithms for solving non-linear problems 129

APPENDIX A

Equations for determination of the post-buckling behavior of thin-walled circular
cylindrical shells
Basic equations

The equations used in this solution are the same as those used by earlier investigators,
[6-8].

The strain—displacement relations, valid for deflections of order t and small rotations,
are

& = U + w32, (A-1)
e, = v,+w2/2—w/R (A-2)
£y = U+ U+ W, W, (A-3)
Linear elastic behavior is assumed and Hooke’s Law is written as
o, = E(e +ve (1 —v?), (A-4)
o, = E(g,+ve,)/(1— v?) (A-5)
axy = Esxy/2(1 + V). (A'6)
The membrane and bending strain energies are given respectively by
t aL a2nR
W, = 3 J lo,+0,)*~2(1+v)(o,0,—0c2%)]dx dy (A-7)
v 04O
and
Et3 rL a27R
W, = 1= J [(Wex + Wy, )2 = 2(1 = V)W, W, — w2 )] dx dy. (A-8)
J 04 0

In the bending energy expression the assumption is made that the curvatures and twist
are given to a sufficient degree of accuracy by the second derivatives of w. The potential
of the axial load is

2xR L
W, = ——tj (Oo)e=1L dyj u, dx. (A-9)

0 0

Variation of the total potential energy W,+ W, + W, with respect to the three dis-
placements u, v and w yields three equations of equilibrium, given by

OxxtOxyy =0 (A-10)
Oyt 0.,=0 (A-11)
and
Dyw = %(axwxwj—y(a,,,wx)Jra—i(ax,.wy)+(%<a,.wy)+f’§. (A-12)
The usual Airy stress function is next introduced, with
g,=F,, g, =F,, o, = —F,, (A-13)
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Thus equations (A-10) and (A-11) are satisfied implicitly, while the direct method of the
calculus of variations is used to solve (A-12). The total potential must first be expressed
in terms of radial displacements. To do this, F is found as a function of w. From a com-
bination of (A-4)-(A-6), (A-10), (A-11) and (A-13) the compatibility relation

VAF = E(w2,—w,w, —w.,/R) {A-14)

follows. Thus an assumed deflection pattern is substituted into (A-14), the result for F,
as well as w, is substituted into the sum of (A-7), (A-8) and (A-9), and the resulting ex-
pression is minimized with respect to the w deflection coefficients.

Non-dimensionalization

The radial displacement is written as a series for w of the form
w = t) A;; cos(inx/Ax) cos(jmy/Ay) (A-15)
while the stress function is given by
F = Et*Y F,, cos(mnx/Ax) cos(nny/iy)—0y*/2 = Et*F ,—0y?*/2. (A-16)

Enough terms are kept in the F series so that F is a particular solution of the compatibility
equation (A-14).

Non-dimensionalization of the total potential energy with respect to Et3L/a*R, and
integration over a unit area, yield

1 Al O’R 2
WR(W, + W, + W,)/E’L = j J {(nF,,--w’Fp;;-—n 75;)
(o]

[}

< ) 1
~-21+ v)[(nF - nz(;—t>(nu2Fp;;)"(W Fpzs) ]}d’? Y+ -

1 a1
Xf '[ {np? gz + W") —2(1—v)p*n? WysWys — ﬂzﬂzw;%;)} dxdy- 2734(%‘) (%B)
odo

(A-17)

where % and j indicate coordinates non-dimensionalized with respect to 1, and 4,
Similarly, the compatibility equation (A-14) when non-dimensionalized becomes

,0 @Y _ n?
( a‘f ‘T‘) Fp = ["2( %5 wixwﬁ —??w:‘:i> (A'IS)
End shortening

A relationship between ¢R/t and oR/Et can be found from the definition of end
shortening. Thus the number of unknowns in the problem may be reduced by one. We
have

L
&= —(1/L)f u, dx (A-19)
0



Computer algorithms for solving non-linear problems 131

which becomes through use of (A-1), (A-4), (A-5) and (A-13)

—(1/L) J [(F,,— vF,)/JE—w}/2]dx. (A-~20)

Using expressions (A-15) and (A-16) for w and F, integrating and evaluating the resulting
expression at y = 0, one obtains

(eR/t) = (aR/Et)—I—%mtz( Y i243+2Y z”A,O> (A-21)
ji#0

Circumferential-displacement .continuity
Ago may be found from the condition of continuity of v in the circumferential direction.
The continuity requirement on v demands that the constant part of v, be zero. From
(A-2), (A-4), (A-5) and (A-13) one obtains
vy = (Fox —vF,)JE+w/R—w}/2. (A-22)

Substitution of (A-15) and (A-16) into (A-22) and setting to zero the constant terms give
Ago = %n(2 YA+ Y jZAizj)—v(aR/Et). (A-23)
i#0

Assumed deflection pattern

The post-buckling behavior was studied for three cases, as shown in (31a, b, c).

The equation of compatibility and the total potential energy in integer form may be
found in Appendix B of [4].
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APPENDIX B

START

K,N,TRIG, ARG,C

r

TRIGSAVEL Il TRIGLL
ARGSAVELL] w ARGLTI
1=(1,1,8)

YTRIG=TRIGIIL
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YARGIZLI=YARGL L)~ ARGIR]
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f
N f
Y TRIG:TRIGIR
ARGLIIw~ ARGSAVELL]
TRIGE 11w TRIGBAVELYY
Tw(1,1,8)
1=0
outpoT N0 !
o TN Iwl4t
YES
FINISH
? NO ! !
XTRIGHCLLY om-ovof [om-smx:u } Iotxksuux:swwu.r Lz.i
YES INO Yes
d NO ? * N SUMX~SUMX SUMY =SUMY
cr,23e2 YTRIG:GIL,2 11,212
+XBIGNET +YSIGNLJ]
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START 1

(' 11,5,0,PRODI,ITER, TERM, TERMC, NMU, NETA, ETAPWR ,NEBAR ;

SWLI = SWLI141¢ 10-ITHIN

T (I,1,K)

SWII)=SWL2]=0

K- S[9]

YES

SWE1]«e SWLI1+100 XNMU+I10XNETA + ETAPWR

SW[21= NEBAR

10

1141

IIERMC {1 J)= TERMC(1,J1+PRODI X DII1

TERMCL, ITERT 111 =PRODIXDI 11|

TERMLI,ITERL1L,J) ~SWLJ]

J={1,1,2)

ITERLI) = ITERlIl*lJ

L

NO

S —
FINISH

?
I1ge4
YES

?
DLI1=0Q

YES

NO

YES °
SWLII-TERMLI,J, 1150
swi21- TERKET 0 21:0

NO
J=0

Jayd+t

?
J< ITERLT)

YES
NO
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FINISH

START

COLS,II,LEVEL,FI

NO

NO

BOOLK1=-0
K (1,1,10)

BOOIIIIKI] ~ BOOLIIKII+i
~ (LEVEL,|, LEVEL+COLS~|

APPENDIX B3- FCALC

Fia.

10
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% START

( §,8FN, 5CF 0, ITER, NKU NETA ETAPWR ,NEBAR, TCF,DIM, TERM, TERMC )

i
| PROD2~ PROD3 - PRODE=1.0 |

[881= 882 587w 10 |
I

1
Lm‘sm, Mz =st21, .. M8=s818l]

K-=SL9]

SZ-w DMLY, ZI~-DIML2Y
$ZT= {1$8ZV/2

COLLINDK] ~ §8L1,2)
INDX= INDX+ $511,2
BOOTINDXY =0
T {f,i,1TRE}

TRIGLI} - SFNIBLTL I
TRISLI+ 87~ SFNLSLIR}
I (1,1, K)

I (11,21
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88[4,13w0

98¢, 118U
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(TRE e |

BOOLI}=0
INDX i

BOOII1 =+ COLITIw
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YES
A
PRODE = BCFIMB,183 PRODYw FTXPRODEX
SOFLMT,ITY
ARGEBI-=SFNIMS,1642)|| | ARGLTI-=BFNIMT,I7421
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PRGDI== F1 X PRODZ X
SOFIMI,II1x TGF,

IARGLIT~= SFNIMILI+2T

IARGLO)-= SFNLMI, L +622)

PRODZw FZXFRODS X
SCFIMZ,I2)

AROL2Y = SFNIMZ T2¢21

ARGLIO) = SFNIM2,12+ 6223

TRIGEPAND

SEARCHNSTORE

?
1< SFNIMLSEZ]

YES

FINISH
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COMMENT - SYNTHESIZATION WAS NOT

s"“l WRITTEN IN PROGEDURAL FORM,
SO THE FLOW CHART i8 GIVEN
FOR THE ENTIRE PROGRAM.
FILL ©,ITER, CPAT{25,1,J2, ) Pl 3.14150285
AND GPATC (25,11 ARRAYS NUMSI§ =25 Plz==PIXPI
HERE. SEE APPENDIX NUMW = 3| Pl4=-Pi2 X PI2
Ba. PI8 =—Pl4x Pl4

l

(nun(sz.mna,u,c-oru,u \POTLJ,31,POTLJ,41, POTCLI)

READ(S1,82 ,CPATC1,J,11,CPATLI,J,21,GPATGLL,J) )}
Te-{1,1,24) J-—0

(1,1, NUMW)
- J=- (1,1,ITERLT)) IT~0

NUMEXIST -~ §W{2] DIV 10

NUMEXIST w-SwE3l D 10'207%

NUMEXIST —swEal DY 10307

[N =(x+9) DIV 0] [WiTcCH=wWiTCH+i

stuu <= SWINI ~ NUMEXIST % |0“°‘"'“'K’l SIZETWITCH] = NUMEXIST
EXCWITCHI = K

NO [J=1 OR Jz2 OR Jz=3 OR Si-e- CPATLEXLII K, 1]

J=19 OR J=20 OR ys2| +CPATLEXL2],L,1) +POTLY,I]
§2--CPATLEXCI1,K,21+CPATLEXI2],L,2] +§82 POTALLIT, 1] = S1
Kz TERLEXLIN Cl~ GPATCLEXEI},KIx CPATGLEXL[21,L1% POTGLJI POTALIT,2]=52
oR ? POTACIIT) =-Ci

LaITERLIEXL21]

IT=IT+l

POTACIT 11-=POTLJ, 1
POTALIT,2]=-POTLJ,2)
POTAGLIT]~e- POTGLL]

NO  FINISH

WRITE YES ?
(I.POTA[X,I],POTAH,ZI,POTAGL’I])J- ISIT

APPENDIX B5—  SYNTHESIZATION
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START EXTWITGH] =
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NEBAR —=- SAYE]
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D Dl AXCIXMUS + 2XC2XMU] | 0% ~- 2 SMIEMIXNINI
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MUF = (NMUx MU }/D-(DIsMUT 1/DD)| )
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P2LK I~ P2LJ K]
Jm=11,1,8)
K= (J,1,8)

SUTPUY SOLNLI! - SOLNLII- DIFFLI3
FINISH SOLN T (11,8}

LINEARSYSTEM
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WRITE
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Resumé—En mécanique appliquée, beaucoup de problémes ne peuvent étre résolus d’une maniére exacte
parcequ’ils sont définis par des équations differentielles non-linéaires. Dans ces cas on peut souvent obtenir
une solution par une méthode ol les inconnues sont représentées par séries trigonométriques, ou polynomiales
dont les coefficients sont plus tard égalés. Ensuite on procdde & la résolution d’équations non-linéaires
algébriques.

Par un autre procédé on &crit une expression pour Iénergie potentielle du systéme qui est ensuite minimisée
par rapport aux coefficients des séries.

Dans cet article des algorithmes sont présentés, conduisant & ’obtention d’équations a ’aide d’un calculateur
digital. Ces équations sont enregistrées au moyen d’une représentation par nombres entiers. L’algorithme de
Newton-Raphson est expliqué pour minimiser ’énergie potentielle représentée par des nombres entiers.

La méthode est appliquée a la résolution des grandes déformations aprés flambage de coques minces
cylindriques circulaires soumises 4 une compression axiale.

Le temps nécessaire pour le calcul est court; grace a I'aide d’un calculateur Burroughs B5000 I'expression
représentant I’énergie potentielle étant déduite en deux minutes environ, et la partie principale de la courbe
charge-—raccourcissement étant obtenue en dix minutes.

A6cTpakT—MHorHe npo6ieMbl NPUKJIATHON MEXaHUKH HEe OOAAAIOTCH TOYHOMY PELUEHHIO 13-33 HeNlHHeH~
HOro XapakTepa ONmMCcaTensHbIX nuddepeHuHanbHeix ypaBHeHHH. B Takux cinydasx pelneHHE HEPEnKo
MOJIyYAeTCA IYTEM NMPHHATHS COOTBEICTBYIOUIHX TPHTOHOMETPHYECKHX WIIHM CTENCHHBIX PAOOB, M PAa3IOXK-
eHMA ¥ coSupaHus K03dHUKEHTOB MONOGHBIX TPHIOHOMETPHYECKHX WICHOB MIIH CTeneHel mepeMeHHON
BeJIMIUHEL. 3aTeM HAOOp HenMHEHHBIX anreOpaH4YecKuX ypaBHEHMM, NMOIyYeHHBI! TakuM oOpas3oM, ymor-
pebnsercs oA NONMyYeHHS DEIleHHSA.

Jpyroe peuuenne MHOTHX npoOsieM TakOro xapaxkrepa COCTOMT M3 pa3pafoTK# MNOTEHUHANLHOTO
BLIPAXEHUA H €10 MUHHMH3HPOBAHHA 110 OTHTIIEHHIO K KO3ddHumeHTaM paa.

B a3roit paborte npencrasneHs anropudMbl Ui BBIBEACHHS YpaBHEHMH NpH noMoumH uadposoi
BBIYMCJIMTEIILHON MAImMHBI. YDaBHEHHA TOrIa 3aMOMMHAIOTCA 4Yepe3 LEJOYUCIHCHHOE IpeACTaBICHHE.
Anropudm HreroToHa-PadcoHa s MEUHMMH3HPOBAHHA ITOTEHIMANA LeJIoe YMCIIoO-PopmMa Toxe npencra-
BJIeH. METON MIUTIOCTPHPOBAH BHIBEACHHEM CHOBA PELICHHS IJIA MOBEACHHA HOCIIE MPONOIbHOro Hiruba
TOHKO-CTEHHBIX KPYIJIO-IIMHAPHYECKMX O0OJIOYEK MOA OCEBLIM CHKATHEM,

Pacuer 3aHMMaeT HEMHOro BpeMeHM; ynorpebiss seivucaurTens Boppoyc BS000 Bce nmoTeHIHansHoe
BEIpaXeHHe OBUIO BhiBeJEHO NPHOIH3HTEIBLHO B OBe MHHYTH, a IJIaBHas ycToRvMBAfA 4acTh KpHBO
HArpy3Kka-cokpamesne ObUla HalfoeHa B NECATH MHHYT.



